Different Methylation Patterns of RUNX2, OSX, DLX5 and BSP in Osteoblastic Differentiation of Mesenchymal Stem Cells
نویسندگان
چکیده
OBJECTIVE Runt-related transcription factor 2 (RUNX2) and osterix (OSX) as two specific osteoblast transcription factors and distal-less homeobox 5 (DLX5) as a non-specific one are of paramount importance in regulating osteoblast related genes including osteocalcin, bone sialoprotein (BSP), osteopontin and collagen type Iα1. The present study sets out to investigate whether epigenetic regulation of these genes is important in osteoblastic differentiation of mesenchymal stem cells (MSCs). MATERIALS AND METHODS In this experimental study, MSCs were differentiated to osteoblasts under the influence of the osteogenic differentiation medium. DNA and RNA were extracted at days 0, 7, 14 and 21 from MSCs differentiating to osteoblasts. Promoter regions of RUNX2, OSX, DLX5 and BSP were analyzed by methylation-specific PCR (MSP). Gene expression was analyzed during osteoblastic differentiation by quantitative real-time polymerase chain reaction (PCR). RESULTS MSP analysis revealed that promoter methylation status did not change in RUNX2, DLX5 and BSP during MSC osteoblastic differentiation. In contrast, OSX promoter showed a dynamic change in methylation pattern. Moreover, RUNX2, OSX, DLX5 and BSP promoter regions showed three different methylation patterns during MSC differentiation. Gene expression analyses confirmed these results. CONCLUSION The results show that in differentiation of MSCs to osteoblasts, epigenetic regulation of OSX may play a leading role.
منابع مشابه
تاثیر داروی زولدرونیک اسید در بیان و متیلاسیون ژن BSP در طول تمایز استئوبلاستیک سلولهای بنیادی مزانشیمی
Background and Aim: Bone sialoprotein (BSP) is a specific marker of osteoblastic differentiation. In this research, the effect of Zoledronic Acid on BSP expression and methylation status during osteoblastic differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: In this experimental study, MSCs were isolated from human bone marrow. For osteogenic differentiation,...
متن کاملEvaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study
Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...
متن کاملمقایسه بیان کمّی فاکتور نسخهبرداری RUNX2 در تمایز سلولهای بنیادی مزانشیمی با محیط تمایزی استئوبلاستی و داروی زولدرونیک اسید
Background and Objectives : RUNX2 is the most specific transcription factor in osteoblastic differentiation of MSCs. In this research, RUNX2 expression was quantified in MSCs differentiated by osteogenic differentiation medium (ODM) and zoledronic acid (ZA). Materials and Methods: In this experimental study, hMSCs were treated by osteogenic differentiation medium and ZA. RNA extraction was ...
متن کاملZoledrinic Acid Induces Steoblastic Differentiation of Mesenchymal Stem Cells without Change in Hypomethylation Status of OSTERIX Promoter
OBJECTIVE Mechanism of zoledronic acid on osteoblastic differentiation of mesenchymal stem cells (MSCs) has not fully understood. With the knowledge of some drugs mechanism that alter methylation pattern of some genes, the present research sets out to evaluate osterix (OSX) promoter methylation pattern during zoledronic acid-induced osteoblastic differentiation of MSCs. MATERIALS AND METHODS ...
متن کاملGATA4 negatively regulates bone sialoprotein expression in osteoblasts
GATA4 has been reported to act as a negative regulator in osteoblast differentiation by inhibiting the Dlx5 transactivation of Runx2 via the attenuation of the binding ability of Dlx5 to the Runx2 promoter region. Here, we determine the role of GATA4 in the regulation of bone sialoprotein (Bsp) in osteoblasts. We observed that the overexpression of Runx2 or Sox9 induced the Bsp expression in os...
متن کامل